

ANNUAL REPORT 2009

UIUC, August 5, 2009

Fluid Flow and Heat Transfer in the Beam Blank Mold

Rui Liu (Ph.D. student) & Brian G. Thomas

Department of Mechanical Science and Engineering

Seid Koric

National Center for Supercomputing Applications-NCSA

University of Illinois at Urbana-Champaign

Objectives

- Find out
 - the molten steel flow pattern in the Beam Blank mold taking into account the momentum and mass sinks at shell
 - heat transfer in the mold taking into account the heat sink at shell
 - the heat flux across the shell
- Perform thermal-mechanical analysis on the beam blank caster
- Find out how to incorporate the effects of heat transfer in the liquid pool into simulations of solidification in the mushy and solid regions

- Meniscus is flat and the no-slip wall boundary condition is applied
- No air is involved at the velocity inlet, and the velocity at the inlet keeps constant during the casting process
- The k-epsilon model is employed for turbulence
- No slag layer is involved in the computation
- The backflow at pressure outlet is carrying the liquidus temperature
- The fluid flow and heat transfer in this case are supposed to reach a final steady state

Scaling of inlet Diameter/Area

 $d_m / d_e = dia_m / dia_e$ $d_m = 82mm$ $d_e = B - 2R' = 418.6mm$ $dia_m = 5mm$ $dia_e = dia_m d_e / d_m = 25.5mm$

 d_m : the measured distance between the two stream centers dia_m : measured stream diameter dia_e and d_e represents the exact lengths of the above parameters

University of Illinois at Urbana-Champaign

asting Consortium Metals Processing Simulation Lab

Rui Liu

5

Critical locations along shell perimeter

Computational Domain

Boundary Conditions

outlet

(667 mm below meniscus)

•

Boundary Name	Boundary condition
shell interface	moving wall
outlet	Pressure outlet
inlet	Velocity inlet
meniscus	No-slip wall
Sym. Plane	Symmetry plane

.

Input parameters

Density (kg/m	ι ³) ρ	6800
Kinetic Viscosity (m²/s) v	0.006
Inlet Velocity (m/s)) V _{in}	1.854
Turbulence intensity at inle	t (%) /	200
Inlet kinetic energy (kg*n	n²/s²) <i>k</i>	0.464
Inlet dissipation rate (m ² /s	ν ³) ε	2.077
Area of inlet flow (m ²)	A _{in}	2.56×10 ⁻⁴
Area of outflow (m ²)	A,	0.0215
Area of top surface (m ²)	A _m	0.032
Liquidus temperature (K)	T _{liquidus}	1770
Pouring temperature (K)	T _{in}	1800
Specific heat of steel (J/(kg	*K)) C _p	687
Casting Speed (m/s)	v _c	0.0148

.

Validation of Mass Sink at Shell

Mass balance from simulation

Mass absorbed rate by the shell (mass sink)

Mass balance from hand calculation

Area of meniscus (m ²)	A _m	0.032
Area of outflow (m²) (for liquid steel)	Α,	0.0215
Casting speed (m/s)	V _c	0.0148

The area of solid steel at mold exit, A_s

$$A_s = A_m - A_l = 0.0105m^2$$

The mass flow rate of solid steel at mold exit is

$$\rho \cdot V_C \cdot A_s = 1.0572 kg/s$$

Difference between the hand calculation and simulation: 0.038~%

The heat sink term is evaluated with the mass flow rate and temperature difference between the liquidus and the reference temperature

$$\dot{Q} = \dot{m}C_P \left(T_{liq} - T_{ref}\right) \qquad \dot{m} = v_{cast} \cdot \rho \cdot A_z$$

T_{ref}: Reference temperature, 298.15 K fixed by FLUENT

*A*_z : Control volume face area projection on the casting direction.

In order to validate the heat sink added in the model, two cases are needed:

> Computation using superheat temperatures

Let the liquidus temperature adopt the value of $T_{re^{p}}$ so the heat sink term becomes 0. Superheat temperature is computed in the simulation.

Computation using real temperatures

Let the liquidus temperature be the real liquidus temperature. The heat sink term is NOT 0.

Metals Processing Simulation Lab

Validation — using superheat

The	heat	trans	sfer	B.C.

University of Illinois at Urbana-Champaign

Boundaries	BC Prescribed
Velocity Inlet	Fixed temperature, at 328.15 K
Shell Interface	Liquidus temperature, at 298.15 K
Pressure Outlet	Fixed backflow temperature, at 298.15 K
Symmetry Planes	Heat flux = 0.
Meniscus	Heat flux = 0.

Superheat temperature at velocity inlet: 30 K

Heat balance calculation

Rui Liu

13

from simulation

Heat		Heat	
Flow-in (kW)		Flow-out (kW)	
Inlet	75.9	Outlet 19.5	
		shell	56.3

(Heat Flow-in) – (Heat Flow-out)

: 0.1 kW

Heat extracted by shell in mold:

56.3/75.9 = 74.2%

Total heat transfer is balanced in this model with the error of 0.1%.

Validation — using real temperature

The heat transfer B.C. Heat bala		balance o	calculat	ion		
Boundaries	BC Prescribed	from simulation				
Velocity Inlet	Fixed temperature, at 1800 K	Flow	Heat Flow-in (kW)		Heat Flow-out (kW)	
Shell Interface	Liquidus	Inlet	3335.2	Outlet	2209.6	
	at 1770 K			shell	56.2	
Pressure Outlet	Fixed backflow temperature, at 1770 K	(Heat Fl 1068.5 I	ow-in) – (H ‹W	leat Flow	-out):	
Symmetry Planes	Heat flux = 0.	Heat taken away by the sink (read from the UDF results): 1084.3 kW				
Meniscus	Heat flux = 0.					
Superheat temperature	e at velocity inlet: 30 K	Total he this mo	eat transfer i del with the	is balance error of 0	d in .4%.	
University of Illinois at Urbana-Champa	ign • Metals Processin	g Simulation Lab		F	Rui Liu 15	

Validation — case comparison

Compare the results from computations using both superheat and real temperatures, the difference should be

$$\Delta \dot{Q} = \dot{m} C_P \left(T_{liquidus} - T_{reference} \right)$$

Boundary	Q _{superheat}	dQ (kW)	dQ + Q _{superheat} (kW)	Q _{real_temperature} (kW)
inlet	75.9	3259.0	3334.9	3335.2
Outlet	19.5	2190.1	2209.6	2209.6
shell	56.3	0.0	56.3	56.2

(Q_{superheat} + dQ) matches the value of Q_{real_temerature}

So the heat sink term added in the real temperature computation is validated.

Temperature distribution

superheat temperature distribution at outflow, z = 0.667 m below meniscus

nuous asting Consortium

superheat distribution at z = 0.009 *m* below meniscus

Heat flux distribution on the shell interface ---- top view

Shell thickness profile for the six points along the shell perimeter

Thermal-mechanical analysis

Equations to solve:

Energy:

$$\rho\left(\frac{\partial H(T)}{\partial T}\right)\left(\frac{\partial T}{\partial t}\right) = \frac{\partial}{\partial x}\left(k(T)\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k(T)\frac{\partial T}{\partial y}\right)$$

 $\nabla \cdot \sigma(\mathbf{x}) + \mathbf{b}_{o} = \rho \ddot{\mathbf{u}}$ **Equilibrium:**

University of Illinois at Urbana-Champaign

nuous asting Strain

Strain Decomposition: $\dot{\varepsilon} = \dot{\varepsilon}_{el} + \dot{\varepsilon}_{ie} + \dot{\varepsilon}_{th}$

25

Rui Liu

Two-way thermal-mechanical coupling:

Mechanical Solution depends on temperature filed through thermal strains

$$\left\{ \varepsilon_{th} \right\} = \left(\alpha(T) \left(T - T_{ref} \right) - \alpha(T_i) \left(T_i - T_{ref} \right) \right) \left[111000 \right]^T$$

 $d < d_{\circ}$

The gap heat coefficient h_q depends on the gap distance d calculated from mechanical solution

$$h_g = h_o \qquad d \le d_0$$

$$h_g = \frac{1}{\frac{d}{k_{air}} + R_c} + h_{rad} \qquad d_0 < d_0$$

Ref: S. Koric and B.G. Thomas. International Journal for Num. Methods in Eng. Vol. 66 1955-1989, 2006

.

Thermal distortion of Mold

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

